Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224749

RESUMO

Hydrogen (H2) generation by electrochemical water splitting is a key technique for sustainable energy applications. Two-dimensional (2D) transition-metal dichalcogenide (MoS2) and silver phosphate (Ag3PO4) possess excellent electrochemical hydrogen evolution reaction (HER) properties when they are combined together as a composite rather than individuals. Reports examining the HER activity by using Ag3PO4, especially, in combination with the 2D layered MoS2 are limited in literature. The weight fraction of MoS2 in Ag3PO4 is optimized for 1, 3, and 5 wt%. The Ag3PO4/1 wt % MoS2 combination exhibits enhanced HER activity with least overpotential of 235 mV among the other samples in the acidic medium. The synergistic effect of optimal nano-scale 2D layered MoS2 structure and Ag3PO4 is essential for creating higher electrochemical active surface area of 217 mF/cm2, and hence this leads to faster reaction kinetics in the HER. This work suggests the advantages of Ag3PO4/1 wt % MoS2 heterogeneous composite catalyst for electrochemical analysis and HER indicating lower resistivity and low Tafel slope value (179 mV/dec) among the prepared catalysts making it a promising candidate for its use in practical energy applications.


Assuntos
Molibdênio , Nanoestruturas , Humanos , Hidrogênio , Cinética , Física
2.
Langmuir ; 39(48): 17295-17307, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37987736

RESUMO

The current study highlights the successful integration of an in silico design with experimental validation to create a highly effective corrosion inhibitor for copper (Cu) surfaces. The synthesized sulfonated zinc phthalocyanine (Zn-Pc) is electrochemically characterized and demonstrates an impressive 97% inhibition efficiency, comparable to the widely used industrial corrosion inhibitor, BTA, for Cu surfaces. The corrosion inhibition is comprehensively analyzed through potentiodynamic polarization and impedance spectroscopy techniques, supported by their respective equivalent circuits. Furthermore, the sample undergoes thorough characterization using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, contact angle measurements, and atomic force microscopy. Density functional theory calculations reveal that sulfonated Zn-Pc exhibits the highest interaction energy, underscoring its exceptional inhibition properties. These results open possibilities for utilizing computational methods to design and optimize corrosion inhibitors for protection of Cu surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...